An Ergonomics Guide to Hand Tools

Introduction

1.

Manual Hand Tools

14.

Workstation and Task Factors

8.

Human Operator Limitations

8.

Process Handling Requirements

3.

Hand Tool Selection Criteria

16:

Power Hand Tools

19.

Weight Load Distribution and Power Lanes

19.

Finger Grip

26.

Handles

12.

Finger Grip and Reaction Force

12.

Threading

27.

Power Tool Wrenches, Miter, and Other Tool Accessories

27.

Work Location

27.

Vibration

29.

Acoustic Noise

30.

In Summary

31.

References

33.

MADISON, WI

Department of Industrial Engineering

Robert C. Radwin, Ph.D., CPE

MANHATTAN, NY

Jonathan L. Haeny, MS, CIH

Prepared under the auspices of the

American Industrial Hygiene Association

AIHA ECONOMICS COMMITTEE
Introduction
Hand Tool Selection Criteria

- Ergonomics and work design
- 2D or 3D printed, or ergonomic designs
- Comfort and fit
- Ease of use
- Noise level
- Safety and reliability
- Durability and maintenance

When choosing a hand tool, consider the following factors:

- Weight: Hand tools should be lightweight to reduce fatigue.
- Grip: Ensure the grip is comfortable and the handle is non-slip.
- Size and shape: Choose a tool that fits your hand comfortably and allows for easy maneuvering.
- Material: Sturdy tools made from high-quality materials are more durable and last longer.
- Availability: Consider the availability of replacement parts and accessories.
- Cost: Evaluate the tool's price relative to its features and performance.

By considering these factors, you can select a hand tool that meets your specific needs and enhances your work efficiency.
<table>
<thead>
<tr>
<th>Drill presses</th>
<th>Pneumatic machines</th>
<th>Presses</th>
<th>Cam-ops</th>
<th>Workpiece setters</th>
<th>Lathes</th>
<th>Milling machines</th>
<th>Wires</th>
</tr>
</thead>
<tbody>
<tr>
<td>(stouted and recessed)</td>
<td>Special file, drill, machine, lathe,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square shank</td>
<td>Ratchet</td>
<td>Cymbal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toolbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nail sets</th>
<th>Nail-puller bars</th>
<th>Wood-splinter wedges</th>
<th>Brick bits and pick sets</th>
<th>Shims</th>
<th>Drill bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(plugs, large or small)</td>
<td>Wood-splinter wedges (round and square)</td>
<td>Brick bits (brick, concrete, stone, yelled)</td>
<td>All-steel wedges and masonry chisels</td>
<td>Steel</td>
<td>Cold chisels (half cape, diamond point, round nose)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axes and Hatchets</th>
<th>Woodcutters' mauls</th>
<th>Bush hammers</th>
<th>Crosscutting tools</th>
<th>Crosscutting tools (crosscutters, crosscutters, crosscutters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand hammers or mash hammers</td>
<td>Woodcutters' mauls</td>
<td>Bush hammers</td>
<td>Crosscutting tools</td>
<td>Crosscutting tools (crosscutters, crosscutters, crosscutters)</td>
</tr>
<tr>
<td>Crosscutting tools (crosscutters, crosscutters, crosscutters)</td>
</tr>
</tbody>
</table>

| Handsaw, crosscutting, rip, tenon | Rubber, plastic, rubber, felt, rubber | Hardwood, plastic, rubber, felt, rubber | Steel, hard wood, plastic, rubber, felt, rubber | Steel, hard wood, plastic, rubber, felt, rubber |

<table>
<thead>
<tr>
<th>Sawing tools</th>
<th>Sawing tools</th>
<th>Sawing tools</th>
<th>Sawing tools</th>
<th>Sawing tools</th>
</tr>
</thead>
</table>

Spanner wrenches	Adjustable, locking, multipurpose	Torque wrenches (click, dial, micrometer	Adjustable wrenches	Open-end wrenches (open-end, combination, two-end), and pliers (adjustable, locking, multipurpose)
Socket wrenches (square, box, double-end)	Nut drivers, bit, socket wrenches			
Wrenches	Wrenches	Wrenches	Wrenches	Wrenches

<table>
<thead>
<tr>
<th>Abrasive tools</th>
<th>Abrasive tools</th>
<th>Abrasive tools</th>
<th>Abrasive tools</th>
<th>Abrasive tools</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hand tools</th>
<th>Hand tools</th>
<th>Hand tools</th>
<th>Hand tools</th>
<th>Hand tools</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of Tool</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of Tool</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasive Tools</td>
<td>Tube grit wheels, Belt wheels, Wire wheels, Disc wheels, Air stones</td>
</tr>
<tr>
<td>Driving Tools</td>
<td>Threaded Reel, Tapered Reel, Hack saws, Reel saws</td>
</tr>
<tr>
<td>Power Hand Tools</td>
<td>Drill bits, Red drills, Screwdrivers, Ratchet, Pliers, Wrenches</td>
</tr>
<tr>
<td>Portable Cutting Tools</td>
<td>Circular saws, Pipe saws, Reel saws, Handsaws, Red saws</td>
</tr>
<tr>
<td>Hole Preparation Tools</td>
<td>Drill bits (angle, in-line, pistol-grip), Tapers, Reamers, Shell bits</td>
</tr>
<tr>
<td>Shaping and Molding Tools</td>
<td>Carvers, Chisels, Bevels, Reamers, Chisels</td>
</tr>
<tr>
<td>Riveting Tools</td>
<td>Rivet drivers, Rivet hammers, Rivet stones, Rivet punches</td>
</tr>
<tr>
<td>Chiseling Tools</td>
<td>Chisels, Broaches, Chisels, Scrapers, Planes</td>
</tr>
<tr>
<td>Finishing Tools</td>
<td>Abrasive tools (buffing, sanding, polishing)</td>
</tr>
<tr>
<td>Special Purpose Tools</td>
<td>Wire-brush tools, Reciprocating and rotary files, Buffers, Sanders (circular, orbital, belt, drum, disc, oscillating, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tools</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasive Tools</td>
<td>Tube grit wheels, Belt wheels, Wire wheels, Disc wheels, Air stones</td>
</tr>
<tr>
<td>Driving Tools</td>
<td>Threaded Reel, Tapered Reel, Hack saws, Reel saws</td>
</tr>
<tr>
<td>Power Hand Tools</td>
<td>Drill bits, Red drills, Screwdrivers, Ratchet, Pliers, Wrenches</td>
</tr>
<tr>
<td>Portable Cutting Tools</td>
<td>Circular saws, Pipe saws, Reel saws, Handsaws, Red saws</td>
</tr>
<tr>
<td>Hole Preparation Tools</td>
<td>Drill bits (angle, in-line, pistol-grip), Tapers, Reamers, Shell bits</td>
</tr>
<tr>
<td>Shaping and Molding Tools</td>
<td>Carvers, Chisels, Bevels, Reamers, Chisels</td>
</tr>
<tr>
<td>Riveting Tools</td>
<td>Rivet drivers, Rivet hammers, Rivet stones, Rivet punches</td>
</tr>
<tr>
<td>Chiseling Tools</td>
<td>Chisels, Broaches, Chisels, Scrapers, Planes</td>
</tr>
<tr>
<td>Finishing Tools</td>
<td>Abrasive tools (buffing, sanding, polishing)</td>
</tr>
</tbody>
</table>
In order to maintain a proper orientation and the correct location of local muscle function, the operator must focus on the appropriate forces to produce the desired motion. The forces required for the operation include the force applied to the handle, the force applied to the tool, and the force required to maintain the tool's orientation. The force required to maintain the tool's orientation should equal or exceed the force required to maintain the tool's orientation.

The operator must be aware of the forces required to maintain the tool's orientation and the forces required to apply the tool to the workpiece. The forces required to maintain the tool's orientation are determined by the weight of the tool, the force required to maintain the tool's orientation, and the force required to apply the tool to the workpiece.

The diagram illustrates the forces required for the operation. The forces required to maintain the tool's orientation are shown in blue, and the forces required to apply the tool to the workpiece are shown in red. The forces required to maintain the tool's orientation are greater than the forces required to apply the tool to the workpiece.

Human Operator Requirements

- Power source
- Bilz, drives, and brakes
- Precision and tolerance
- Speeds
- Torque
- Load and forces

Process Engineering Requirements

- Workstation and tool orientation: The tool orientation and tool position should be such that the tool is oriented correctly with respect to the workpiece.
- Process efficiency: The process should be efficient and require minimal setup and adjustment.
- Tool durability: The tool should be designed to maintain its orientation and function without requiring frequent maintenance.
- Tool performance: The tool should be capable of maintaining the orientation and function required for the process.
location and orientation cannot be changed in still workers, consider scaling. One property since the dominant hand is usually stronger and more dexterous. One gapable of the object while the right hand. This can sometimes pose a problem if the object is located where the right hand cannot reach it. The population of left-handed individuals makes up about 10%-12% of the population, but many tools are designed for right-handed individuals, which can be problematic for left-handed users. Therefore, proper training and adaptation of tools for left-handed users are essential. An additional clearance should be provided for left-handed users. Over the years, the efficiency of surgeries has increased, and the implementation of new tools has made surgeries more efficient and less invasive. The use of advanced technology in surgeries is becoming more commonplace, allowing surgeons to perform more complex procedures with greater precision. Figure 2: Swedish innovation exposed that these were held and fixed away from the body. The design of the tool allows for better control and precision during surgeries.

The precision of the tool is crucial in surgeries. Therefore, it is essential to ensure that the tool is designed for the specific needs of the surgeon. Surgeons require tools that are comfortable to hold, provide adequate control, and allow for precise movements. The design of the tool should be ergonomic, allowing the surgeon to perform surgeries with ease and precision. The tool should be easy to maneuver and provide a steady grip. The tool should also be designed to minimize the risk of infection and ensure patient safety. Overall, the design of the tool plays a crucial role in the success of surgeries. Therefore, it is essential to ensure that the tool is designed for the specific needs of the surgeon and the patient.
workstation place with their eyes on the job. The chair is oriented to provide a comfortable viewing angle for the worker. The desk is adjustable in height and depth to accommodate different users.

Workstation and Task Factors

Workstations should be designed to facilitate efficient and effective work processes. Factors to consider include the layout of the workspace, the placement of equipment, and the arrangement of work materials. The layout should allow for easy access to necessary tools and materials while minimizing clutter and distractions. The equipment should be ergonomically designed to promote comfort and reduce strain. The arrangement of work materials should be logical and intuitive, allowing for efficient retrieval and use.

Comfort and Ergonomics

Workstations should be designed with the worker's comfort in mind. This includes factors such as chair height and seat depth, desk height and width, and the placement of equipment. The design should promote good posture and minimize strain on the worker's body. The use of adjustable equipment can help to accommodate different user needs and preferences.

Environmental Conditions

The work environment should be conducive to productivity and worker well-being. Factors to consider include lighting, temperature, and noise levels. Adequate lighting is necessary to ensure that workers can see their tasks clearly. Temperature and humidity should be regulated to provide a comfortable working environment. Noise levels should be kept at a manageable level to reduce distractions and promote concentration.

Safety and Security

Workstations should be designed with safety and security in mind. This includes factors such as secure storage for sensitive materials, proper electrical connections, and adequate space for emergency exits. The design should also take into account potential hazards, such as heavy equipment or sharp objects, and provide appropriate safeguards to prevent accidents.

Conclusion

Workstations are an important consideration in the design of workspaces. They should be designed to support the tasks that need to be performed, promote comfort and health, and provide a safe and secure environment. By considering the factors outlined above, designers can create workstations that support efficient and effective work processes while also enhancing the well-being of the workers who use them.
The known 3D gaze - a reassessment of the underlying factors including the role of the fusiform face area (FFA). There is increasing evidence that the FFA plays a critical role in the processing of faces, including gaze direction. This area is responsive to the direction of gaze, even when the face is not the primary focus of attention. This suggests that the FFA may be involved in the perception of gaze as a cue for social information.

For example, in a study by Perrett et al. (1995), participants were presented with images of human faces with different gaze directions. The participants were asked to judge the sex of the person in the image. The results showed that participants were more accurate in judging the sex of the person when the gaze was directed towards them, compared to when the gaze was directed away from them. This suggests that the FFA may be involved in the perception of gaze as a cue for social information.

In another study by Perrett and Rolls (1995), participants were presented with images of human faces with different gaze directions. The participants were asked to judge whether the expression on the face was happy, sad, or neutral. The results showed that participants were more likely to judge the expression as happy or neutral when the gaze was directed towards them, compared to when the gaze was directed away from them. This suggests that the FFA may be involved in the perception of gaze as a cue for social information.

In summary, the FFA plays a critical role in the processing of faces, and is responsive to the direction of gaze. This suggests that the FFA may be involved in the perception of gaze as a cue for social information.
Power Hand Tools

Intuitive, user-friendly hand tools may improve the user's efficiency and reduce muscle strain. Properly designed hand tools can introduce additional safety features, faster process speeds, and improved comfort. The condition of the tool can affect the overall performance and longevity of the tool.

Although basic cutting tasks require different types of power hand tools, certain tasks require specific tools. For example, a bench grinder is used for sharpening tools and equipment, while a drill is used for making holes in various materials. Power hand tools are essential in a variety of tasks, from woodworking to automotive repair.
Read Force and Reaction Force

When the tool is in use, the operator must exert a force equal to the reaction force to avoid fatigue.

Supporting accessories

Heavy power tools should be supported with counterweights to ensure stability. The operator should position the tool so that the weight is balanced and the tool is stable.
(Mx) increases the ability to resist against the torque and hence the associated reaction force. Increasing the length of the moment arm decreases the required force for the tool to be used. The selection of the tool shape depends on the torque requirements of the job.

Figure 11 — Selection of the tool shape depends on the torque requirements of the job.

\[M_{\text{total}} = M_x + M_y \]
Balusters so that minimal effort is needed to hold and use the tools in the desired
configuration by hold tools, special attention should be given to maintaining
spindle counterbalance, any platforms, and flooring or adjustable arms are available to
spindle counterbalance, and other tools are accessible.

Figure 1: Torque Reaction arms in-line power tools.

Hands

Aim for a stable stance while adjusting the handle position before using the tool. The
handle should be positioned at a comfortable angle for gripping the tool. Adjust the
handle position before use, as changes to the handle position can affect the tool's
performance. Ensure the handle is locked in place to prevent accidental detachment.

Work Location

Power tool handles include an anti-reverse feature, which prevents the tool from
spinning in reverse when the trigger is released. This feature is especially important when
working with high-torque tools to prevent the tool from spinning in reverse when the
trigger is released. Ensure that the handles are secured tightly to prevent accidental
detachment. Always wear safety glasses and gloves when operating power tools.

Recessed Areas

When using power tools, it is important to ensure that the tool is properly
secured and aligned. Use the anti-reverse feature to prevent the tool from
spinning in reverse when the trigger is released. Ensure that the handles are
secured tightly to prevent accidental detachment. Always wear safety glasses and
gloves when operating power tools.

Dangers

Power tool handles include an anti-reverse feature, which prevents the tool from
spinning in reverse when the trigger is released. This feature is especially important when
working with high-torque tools to prevent the tool from spinning in reverse when the
trigger is released. Ensure that the handles are secured tightly to prevent accidental
detachment. Always wear safety glasses and gloves when operating power tools.
These noise sources can be reduced by using tools with lower volume that create less auditory noise.

Acoustic Noise

Focus must be very tight.

For the heavy load, audible noises of tools such as cutters, hand tools with high resonant frequencies can often be reduced because they are usually low frequency and can be reduced by means of vibration isolation systems, and suppressor systems. When the system frequency is low, the vibration isolation system is effective. When the system frequency is high, the vibration isolation system is not effective.

Vibration isolation is improved by increasing the system frequency. However, the system frequency is increased by increasing the power and reducing the tool weight. The effective vibration isolation system is above 100 Hz.

Compared to the vibration isolation system, the vibration isolation system is more effective and useful in high frequency ranges.

In Summary

Using precision tools results in lower noise levels in high frequency. The noise levels are reduced by using tools with lower frequency and lower vibration. The tool weights are reduced by using tools that are lighter and have lower vibration. The tool weights are reduced by using tools that are lighter and have lower vibration. These noise sources can be reduced by using tools with lower frequency and lower vibration. The tool weights are reduced by using tools that are lighter and have lower vibration. These noise sources can be reduced by using tools with lower frequency and lower vibration. The tool weights are reduced by using tools that are lighter and have lower vibration. These noise sources can be reduced by using tools with lower frequency and lower vibration. The tool weights are reduced by using tools that are lighter and have lower vibration. These noise sources can be reduced by using tools with lower frequency and lower vibration. The tool weights are reduced by using tools that are lighter and have lower vibration. These noise sources can be reduced by using tools with lower frequency and lower vibration. The tool weights are reduced by using tools that are lighter and have lower vibration. These noise sources can be reduced by using tools with lower frequency and lower vibration. The tool weights are reduced by using tools that are lighter and have lower vibration. These noise sources can be reduced by using tools with lower frequency and lower vibration. The tool weights are reduced by using tools that are lighter and have lower vibration.
References